Introduction of a Tolerance Factor for the Nd₂CuO₄ (*T'*)-Type Structure

Bai-Hao Chen

Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964

Received April 22, 1996; accepted May 3, 1996

A tolerance factor, $tf = [3\sqrt{2}r_0 + 2\sqrt{6}(r_A + r_0)]/9(r_B + r_0)$, has been established for the Nd₂CuO₄-type structure, where r_A , r_B , and r_0 are the radii of the A, B, and O ions, respectively. It is based on the geometrical matching between the A-O, B-O, and O-O bond distances, and it can be used to distinguish between Nd₂CuO₄(T')-, T^* -, and K₂NiF₄(T)-type phases. Using Shannon's ionic radii, it is found that the T' phases occur for tf < 1.00 while T phases form for tf > 1.00. As expected, the T^* structure exists in a very narrow region between the stability boundaries of these two structure types. The fact that T' and T separate at tf = 1.00 suggests that the new tolerance factor model is applicable to both structure types. @ 1996 Academic Press, Inc.

INTRODUCTION

The discovery of the superconductivity in the T-type $(La, Ba)_2CuO_4$ and T'-type $(Nd, Ce)_2CuO_4$ has motivated study of crystal chemistry and physical properties of the cuprates having these structures (1, 2). The T (K_2NiF_4) structure of the ternary oxides A_2BO_4 can be described as an intergrowth of ABO3 perovskite- and AO rock-salt layers along the *c*-axis, containing corner-shared BO₆ octahedra and AO_9 polyhedra. In contrast, the T' (Nd₂CuO₄) structure is derived from an intergrowth of BO₂ infinite layer sheets and A_2O_2 fluorite-type layers along the *c*axis, containing corner-shared BO_4 square planes and AO_8 cubes. Although the cation arrangements in both the T'and T-type structures are the same, their anion configurations are different. The T^* structure consists of a hybrid of the T and T' structures (3). The structure of the T'type Nd_2CuO_4 is presented in Fig. 1.

Several research groups recently have investigated the stability of the T and T' structural types using the well-known Goldschmidt tolerance factor t as a criterion. This tolerance factor (also called the perovskite tolerance factor) is based on an analysis of the perovskite subcell of the structure and is defined as

$$t = (r_A + r_O)/\sqrt{2}(r_B + r_O),$$
 [1]

where r_A , r_B , and r_O are the radii of the A, B, and O ions, respectively (4–8). It was found that phases with the Ttype structure fall in the range 0.87 < t < 0.99 while those with the T'-type exist for 0.83 < t < 0.86 (5). If the phases Ln_2CuO_4 (Ln = Dy, Ho, Er, Tm, Y), prepared under high pressure (9), are included, the lower limit of t for the T'phases extends to 0.81. The T^* phases occur at tolerance factors between t of the T and T' phases.

The Goldschmidt tolerance factor provides an excellent guide for predicting when perovskite-related structures may be expected, and for classifying the structural type of compounds with the general formula ABX_3 , and it has been in use for over half a century. The tolerance factor is based on the geometrical matching between the A-Xand B-X layers in the cubic perovskite structure. However, the A atom is in twelve-coordination for the perovskite structure but in nine-coordination for the T-type structure. In fact, the A-O bond in the T-type structure exhibits features of both the twelve-coordination of perovskite and the six-coordination of rock salt. Perhaps for these reasons, most t values for the T phases are closer to the lower t limit (4, 5). In addition, the structure of the T^* -type CaSmCuO₃Cl has been determined by single crystal X-ray diffraction (10). Unfortunately, its t value (0.842) is near the center of the T' field. In order to address these issues, we introduce a Nd₂CuO₄-type tolerance factor tf, based on the geometrical matching between the A-O, B-O, and O-O distances.

MODEL OF THE T'-TYPE TOLERANCE FACTOR tf

We assume that the AO_8 cube has an idea CsCl-type structure in the T' phase and that all ions are spherical with rigid contact to each other. The edge length L_c of the cube can be expressed as

$$L_{\rm c} = a_{A-{\rm O}}/\sqrt{2}$$
 [2]

and

63

$$L_{\rm c} = 2(r_A + r_{\rm O})/\sqrt{3}.$$
 [3]

FIG. 1. Structure of the *T'*-type Nd₂CuO₄. Large, medium, and small balls represent Nd, Cu, and O atoms, respectively.

Substituting Eq. [2] into [3], the relationship between the *a* lattice parameter and the bond distances can be written as

$$a_{A-O} = 2\sqrt{6(r_A + r_O)/3}.$$
 [4]

In addition,

$$a_{B-O} = 2(r_B + r_O)$$
 [5]

and

$$a_{\rm O-O} = \sqrt{2}(r_{\rm O} + r_{\rm O}) = 2\sqrt{2}r_{\rm O},$$
 [6]

where a_{A-O} , a_{B-O} , and a_{O-O} are the *a* lattice parameters for equilibrium A–O, B–O, and O–O bond distances, respectively. r_A is the radius of the eight-coordinated cation, r_B is radius of the square-planar-coordinated cation, and r_O is the radius of the six-coordinated oxygen ion.

From Shannon's ionic radii (11), the *a* lattice parameter $a_{A-O} = 2\sqrt{6}(r_A + r_O)/3$ for the *T'*-type Nd₂CuO₄ is 10.7% greater than $a(T)_{A-O} = \sqrt{2}(r_A + r_O)$ for the *T*-type La₂ CuO₄, where $a(T)_{A-O}$ is the *a* parameter based upon the *A*-O distance for the *T*-type structure and r_A is the radius of the nine-coordinated La⁺³. The real difference between *a* of Nd₂CuO₄ and *a* of La₂CuO₄ is only 3.6% (12). The geometrical matching can be reached by expanding the *B*-O layers and elongating the *A*O₈ cubes along the *c*-axis. As a result, the O-O distance is only 279 pm in the (004) planes but 304 pm along the *c*-axis for Nd₂CuO₄. As the size of *A* decreases, the electrostatic repulsion between

the coplanar oxygens in the fluorite layers increases. Based on the consideration of the competition between the A-O attraction and O-O repulsion, as well as the geometrical matching between the bond distances, a tolerance factor tf for the Nd₂CuO₄ (T')-type structure is proposed as

$$tf = [1/3 a_{O-O} + 2/3 a_{A-O}]/a_{B-O}.$$
 [7]

The weighting of factors in the numerator reflects the fact that the number of A-O bonds is twice the number of the O-O bonds in the (004) planes in the unit cell. Substituting Eqs. [4], [5], and [6] into [7], *tf* can be expressed as

$$tf = [3\sqrt{2}r_{\rm O} + 2\sqrt{6}(r_A + r_{\rm O})]/9(r_B + r_{\rm O})$$
[8]

or

$$tf = [(3\sqrt{2} + 2\sqrt{6})r_{\rm O} + 2\sqrt{6}r_A]/9(r_B + r_{\rm O}).$$
 [9]

TEST OF THE TOLERANCE FACTOR tf

The T' tolerance factor tf values for the T'-, T*-, and T-type A_2BO_4 were calculated by employing Shannon's ionic radii (11). The A_2BO_4 phases, studied by Bringley et al. for their stability limits using the perovskite-type tolerance factor t (5), were selected for the test of tf. However, the T phases, for which the r_B values are not available in Ref. (11), were not included. Since these phases have the t values between 0.915 and 0.976, excluding them would not affect the determination of the stability limit of the Tphases. $La_{1.5}Nd_{0.5}CuO_4$ was also rejected because the T' phase at this composition has been reported to be thermodynamically different from the T' phase at lower La concentration (6, 7). The T'-type Ln_2CuO_4 (Ln = Dy, Ho, Er, Tm, Y) and La₂PdO₄ and the T-type Ca₂GeO₄ and Sr_2VO_4 were included in the analysis (9, 13–15). The latter two adopt more than one structural type (16).

Since the four-coordinated radius of V⁺⁴ is not available in Ref. (11), the average V⁺⁴–O bond distance (180.5 pm) of the K₂SO₄-type S₂VO₄ was taken (16). For the same reason, the Cu⁺³–O bond distance (183 pm) found in the NaCuO₂ phase was used for LaSrCuO₄ (17). Comparison of the tolerance factors *tf* and *t* for A_2BO_4 are summarized in Table 1.

RESULTS AND DISCUSSION

This study shows that the T' phases exhibit tolerance factors in the range 1.00 > tf > 0.96 while the T phases occur for 1.00 < tf < 1.14. The T^* phases, as expected, exist in a very narrow region between the T and T' boundaries. A high temperature phase transition from the K₂SO₄to T-type was found in Sr₂VO₄ (15, 16). Its tf = 1.131 value is near the high limit of the T phases, suggesting the region

A_2	В	tf	t	A_2	В	tf	t
			T-type (2	A_2BO_4)			
Sr ₂	Mn	1.141	0.993	Sr ₂	V	1.131	0.968^{l}
LaSr	Al	1.126	0.973	Sr_2	Ti	1.122	0.956
LaSr	Cu	1.101	0.971	Ca ₂	Mn	1.098	0.945
Ca ₂	Ge	1.098	0.945 ^a	LaSr	Ga	1.077	0.932
PrSr	Fe	1.061	0.914	GdSr	Fe	1.051	0.902
Sr ₂	Sn	1.047	0.917	Ba_2	Pb	1.039	0.933
La ₂	Ni	1.019	0.885	$La_{1.9}Sr_{0.1}$	Cu	1.014	0.879
Pr ₂	Ni	1.010	0.873 <i>c</i>	La_2	Cu	1.009	0.868
Nd ₂	Ni	1.005	0.867^{c}	La ₂	Со	1.004	0.865
			T'-type (A_2BO_4)			
Pr ₂	Cu	0.999	0.856	Nd ₂	Cu	0.995	0.851
Nd _{1.85} Ce _{0.15}	Cu	0.991	0.847	Sm ₂	Cu	0.986	0.841
Eu ₂	Cu	0.983	0.837	Gd_2	Cu	0.979	0.832
La ₂	Pd	0.974	0.818	Dy_2	Cu	0.972	0.824
Y ₂	Cu	0.970	0.822^{a}	Ho ₂	Cu	0.969	0.821
Er_2	Cu	0.966	0.817^{a}	Tm_2	Cu	0.963	0.814
A_2		tf	t	A_2		tf	t
			T*-type (2	4₂CuO₄)			
$La_{0.85}Eu_{0.9}Sr_{0.25}$	1.001		0.859	LaGd _{0.8} Sr _{0.2}		1.000	0.857
$La_{0.8}SmSr_{0.2}$	1.000		0.858	$La_{0.75}SmSr_{0.25}$		1.000	0.858
$La_{0.82}SmSr_{0.18}$	1.000		0.857	$La_{1,1}Eu_{0,8}Sr_{0,1}$		1.000	0.857
$La_{0.9}Eu_{0.9}Sr_{0.2}$	1.000		0.857	La _{0.8} EuSr _{0.2}		0.999	0.850
$La_{1,3}Tb_{0,7}$	0.999		0.855	$La_{1.4}Tb_{0.6}$		0.999	0.85
$La_{0.9}Y_{0.8}Sr_{0.3}$	0.997		0.855	LaDy _{0.8} Sr _{0.2}		0.997	0.854
$LaEu_{0.9}Sr_{0.1}$	0.997		0.855	La _{1.2} Dy _{0.8}		0.994	0.85

TABLE 1Comparison of the Tolerance Factors tf and t for the A_2BO_4 Compounds

^a High pressure form.

^b High temperature form.

^c Orthorhombic.

with *tf* greater than this value could belong to the K₂SO₄type field, except that of (1.141) for Sr₂MnO₄. The result of the computation of the *tf* values for the K₂SO₄-type phases Ca₂SiO₄, Sr₂MO₄ (M = Si, Ge), and Ba₂MO₄ (M = Ti, Ge, V) confirms the expectation (18).

Besides temperature, pressure also greatly affects the stability limit of the T' and T phases. For example, a high pressure phase transition from olivine-type, having six-coordinated A and four-coordinated B, to T-type was found in Ca₂GeO₄ (14). In addition, the T' phases Ln_2 CuO₄ (Ln = Dy, Ho, Er, Tm, Y) with $tf \le 0.972$ can only be prepared at high pressure due to the presence of the small size of Ln (9). Both examples follow a general rule that the coordination number of the cation increases with pressure.

The *tf* value for the T^* -type CaSmCuO₃Cl is 0.993 (10). The result is better than that of t = 0.842 calculated by the perovskite tolerance factor as mentioned earlier. The tolerance factor *tf* also can be applied to the *T*-type halides and sulfides (19, 20). For example, the *tf* values for K₂NiF₄ (1.121), K_2CuF_4 (1.109), Ba_2HfS_4 (1.064), and Ba_2ZrS_4 (1.060) all fall in the predicted field.

CONCLUSIONS

A new tolerance factor tf for the Nd₂CuO₄-type structure has been proposed based on the geometrical matching between the A-O, B-O, and O-O bond distances. It has been successfully applied in the investigation of the structural stability of the T', T, and T^* phases. Surprisingly, the T and T' phases are perfectly separated by an "ideal" tolerance factor tf = 1.00, suggesting that the model relates accurately to the ionic packing factors of the T' and Tstructures, and clearly showing that tf is a very powerful classification parameter.

ACKNOWLEDGMENT

The author thanks Dr. Bruce W. Scott and Professor David Walker for very helpful discussions. This work is contribution number 5526 from the Lamont-Doherty Earth Observatory of Columbia University and was supported by the National Science Foundation and the Department of Energy.

REFERENCES

- 1. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
- 2. Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989).
- E. Takayama-Muromachi, Y. Matsui, Y. Uchida, F. Izumi, M. Onoda, and K. Kato, *Jpn. J. Appl. Phys.* 27, L2283 (1988).
- 4. P. Ganguly and C. N. R. Rao, J. Solid State Chem. 53, 193 (1984).
- J. F. Bringley, S. S. Trail, and B. A. Scott, J. Solid State Chem. 86, 310 (1990).
- A. Manthiram and J. B. Goodenough, J. Solid State Chem. 87, 402 (1990).
- J. B. Goodenough and A. Manthiram, J. Solid State Chem. 88, 115 (1990).
- 8. B.-H. Chen and B. W. Eichhorn, J. Solid State Chem. 97, 340 (1992).
- 9. H. Okada, M. Takano, and Y. Takeda, Physica C 166, 111 (1990).

- K. V. Ramanujachary, M. Greaney, R. L. Fuller, and M. Greenblatt, J. Solid State Chem. 93, 263 (1991).
- 11. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
- (a) Von H. Müller-Buschbaum and W. Wollschläger, Z. Anorg. Allg. Chem. 414, 76 (1975); (b) J. M. Longo and P. M. Raccah, J. Solid State Chem. 6, 526 (1973).
- 13. J. P. Attfield and G. Férey, J. Solid State Chem. 80, 286 (1989).
- 14. A. F. Reid and A. E. Ringwood, J. Solid State Chem. 1, 557 (1970).
- M. Cyrot, B. Lambert-Andron, J. L. Soubeyroux, M. J. Rey, Ph. Dehauht, F. Cyrot-Lackmann, G. Fourcaudot, J. Beille, and J. L. Tholence, *J. Solid State Chem.* 85, 321 (1990).
- W. Gong, J. E. Greedan, G. Liu, and M. Bjorgvinsson, J. Solid State Chem. 94, 213 (1991).
- 17. N. E. Brese and M. O'Keeffe, J. Solid State Chem. 83, 1 (1989).
- 18. G. Liu and J. E. Greedan, J. Solid State Chem. 103, 228 (1993) and references therein.
- 19. B.-H. Chen and B. W. Eichhorn, Mater. Res. Bull. 26, 1035 (1991).
- M. Saeki, Y. Yajima, and M. Onoda, J. Solid State Chem. 92, 286 (1991).