Introduction of a Tolerance Factor for the Nd₂CuO₄ (*T*9**)-Type Structure**

Bai-Hao Chen

Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964

Received April 22, 1996; accepted May 3, 1996

A tolerance factor, $tf = [3\sqrt{2}r_0 + 2\sqrt{6}(r_A + r_0)]/9(r_B + r_0)$, **has been established for the Nd₂CuO₄-type structure, where** r_A **,** type structure fall in the range $0.87 < t < 0.99$ while those r_B , and r_0 are the radii of the A, B, and O ions, respectively. with the T'-type exis *r_B*, and *r*₀ are the radii of the *A*, *B*, and O ions, respectively. with the *T'*-type exist for 0.83 < *t* < 0.86 (5). If the phases It is based on the geometrical matching between the *A*-O, *B*-O, *Ln*₂CuO₄ *T* separate at $tf = 1.00$ suggests that the new tolerance factor may be expected, and for classifying the structural type of model is applicable to both structure types. \circ 1996 Academic Press, Inc. compounds with the g **model is applicable to both structure types.** \circ 1996 Academic Press, Inc.

layer sheets and A_2O_2 fluorite-type layers along the *c*- we introduce a Nd₂CuO₄-type tolerance factor *tf*, based axis, containing corner-shared BO_4 square planes and AO_8 on the geometrical matching between t cubes. Although the cation arrangements in both the $T'-O-O$ distances. and *T*-type structures are the same, their anion configurations are different. The T^* structure consists of a hybrid **MODEL OF THE** *T*^{\prime}-TYPE TOLERANCE FACTOR *tf* of the T and T' structures (3). The structure of the T' -

stability of the *T* and *T'* structural types using the well- with rigid contact to each other. The edge length L_c of the known Goldschmidt tolerance factor *t* as a criterion. This cube can be expressed as tolerance factor (also called the perovskite tolerance factor) is based on an analysis of the perovskite subcell of the structure and is defined as

$$
t = (r_A + r_O) / \sqrt{2}(r_B + r_O),
$$
 [1] $L_c = 2(r_A + r_O) / \sqrt{3}.$ [3]

where r_A , r_B , and r_O are the radii of the *A*, *B*, and O ions, respectively (4–8). It was found that phases with the *T*-

been in use for over half a century. The tolerance factor is based on the geometrical matching between the *A–X* **INTRODUCTION** and *B–X* layers in the cubic perovskite structure. However, The discovery of the superconductivity in the T-type

(La, Ba)₂CuO₄ and T'-type (Nd, Ce)₂CuO₄ has motivated

in fact, the A-O bond in the T-type structure exhibits

study of crystal chemistry and physical properti on the geometrical matching between the A –O, B –O, and

type Nd_2CuO_4 is presented in Fig. 1. We assume that the AO_8 cube has an idea CsCl-type Several research groups recently have investigated the structure in the *T'* phase and that all ions are spherical

$$
L_{\rm c} = a_{A-\rm O}/\sqrt{2} \tag{2}
$$

and

63

$$
L_{\rm c} = 2(r_A + r_{\rm O})/\sqrt{3}.\tag{3}
$$

FIG. 1. Structure of the *T'*-type Nd₂CuO₄. Large, medium, and small **TEST OF THE TOLERANCE FACTOR** *tf* balls represent Nd, Cu, and O atoms, respectively.

$$
a_{A-O} = 2\sqrt{6(r_A + r_O)/3}.
$$
 [4]

$$
a_{B-O} = 2(r_B + r_O)
$$
 [5]

$$
a_{\text{O}-\text{O}} = \sqrt{2}(r_{\text{O}} + r_{\text{O}}) = 2\sqrt{2}r_{\text{O}},
$$
 [6]

where a_{A-O} , a_{B-O} , and a_{O-O} are the *a* lattice parameters Since the four-coordinated radius of V^{+4} is not available for equilibrium A –O, B –O, and O–O bond distances, re r_B is radius of the square-planar-coordinated cation, and

 $a_{A-O} = 2\sqrt{6(r_A + r_O)/3}$ for the *T*'-type Nd₂CuO₄ is 10.7% in Table 1. greater than $a(T)_{A-O} = \sqrt{2}(r_A + r_O)$ for the *T*-type La₂ CuO₄, where $a(T)_{A-O}$ is the *a* parameter based upon the **RESULTS AND DISCUSSION** A –O distance for the *T*-type structure and r_A is the radius of the nine-coordinated La^{+3} . The real difference between *a* of Nd₂CuO₄ and *a* of La₂CuO₄ is only 3.6% (12). The factors in the range $1.00 > tf > 0.96$ while the *T* phases geometrical matching can be reached by expanding the occur for $1.00 \lt tf \lt 1.14$. The T^* phases, as expected, *B*–O layers and elongating the $A O_8$ cubes along the *c*-axis. exist in a very narrow region between the *T* and *T*^{\prime} bound-As a result, the O–O distance is only 279 pm in the (004) aries. A high temperature phase transition from the K_2SO_4 planes but 304 pm along the *c*-axis for Nd_2CuO_4 . As the to *T*-type was found in $Sr_2VO_4(15, 16)$. Its $tf = 1.131$ value size of \vec{A} decreases, the electrostatic repulsion between is near the high limit of the \vec{I} phases, suggesting the region

the coplanar oxygens in the fluorite layers increases. Based on the consideration of the competition between the *A*–O attraction and O–O repulsion, as well as the geometrical matching between the bond distances, a tolerance factor *tf* for the Nd_2CuO_4 (*T'*)-type structure is proposed as

$$
tf = [1/3 a_{O-O} + 2/3 a_{A-O}]/a_{B-O}.
$$
 [7]

The weighting of factors in the numerator reflects the fact that the number of *A*–O bonds is twice the number of the O–O bonds in the (004) planes in the unit cell. Substituting Eqs. [4], [5], and [6] into [7], *tf* can be expressed as

$$
tf = [3\sqrt{2}r_{\rm O} + 2\sqrt{6}(r_{\rm A} + r_{\rm O})]/9(r_{\rm B} + r_{\rm O})
$$
 [8]

or

$$
tf = [(3\sqrt{2} + 2\sqrt{6})r_{\rm O} + 2\sqrt{6}r_{A}]/9(r_{B} + r_{\rm O}).
$$
 [9]

The *T*^{\prime} tolerance factor *tf* values for the *T*^{\prime}-, *T*^{*}-, and *T*-type A_2BO_4 were calculated by employing Shannon's Substituting Eq. [2] into [3], the relationship between the *et al.* for their stability limits using the perovskite-type *a* lattice parameter and the bond distances can be written as tolerance factor $t(5)$, were selected for the test of *tf*. However, the T phases, for which the r_B values are not available *in Ref.* (11), were not included. Since these phases have the *t* values between 0.915 and 0.976, excluding them would
not affect the determination of the stability limit of the *T* phases. $La_{1.5}Nd_{0.5}CuO_4$ was also rejected because the *T'* phase at this composition has been reported to be thermodynamically different from the *T'* phase at lower La conand centration (6, 7). The T' -type Ln_2CuO_4 ($Ln = Dy$, Ho, Er, Tm, Y) and La_2PdO_4 and the *T*-type Ca_2GeO_4 and $Sr₂VO₄$ were included in the analysis (9, 13–15). The latter two adopt more than one structural type (16).

in Ref. (11), the average V^{+4} –O bond distance (180.5 pm) spectively. r_A is the radius of the eight-coordinated cation, of the K₂SO₄-type S₂VO₄ was taken (16). For the same reason, the Cu⁺³–O bond distance (183 pm) found in the $r_{\rm O}$ is the radius of the six-coordinated oxygen ion. NaCuO₂ phase was used for LaSrCuO₄ (17). Comparison
From Shannon's ionic radii (11), the *a* lattice parameter of the tolerance factors *tf* and *t* for $A_2BO_$ of the tolerance factors *tf* and *t* for A_2BO_4 are summarized

This study shows that the T' phases exhibit tolerance

A ₂	\boldsymbol{B}	tf	\boldsymbol{t}	A ₂	B	tf	\mathfrak{t}
			T-type (A_2BO_4)				
Sr ₂	Mn	1.141	0.993	Sr ₂	V	1.131	0.968^b
LaSr	Al	1.126	0.973	Sr ₂	Ti	1.122	0.956
LaSr	Cu	1.101	0.971	Ca ₂	Mn	1.098	0.945
Ca ₂	Ge	1.098	0.945^a	LaSr	Ga	1.077	0.932
PrSr	Fe	1.061	0.914	GdSr	Fe	1.051	0.902
Sr ₂	Sn	1.047	0.917	Ba ₂	Pb	1.039	0.933
La ₂	Ni	1.019	0.885	La _{1.9} Sr _{0.1}	Cu	1.014	0.879
Pr_2	Ni	1.010	0.873c	La ₂	Cu	1.009	0.868c
Nd ₂	Ni	1.005	0.867c	La ₂	Co	1.004	0.865c
			T' -type (A_2BO_4)				
Pr ₂	Cu	0.999	0.856	Nd ₂	Cu	0.995	0.851
$\rm Nd_{1.85}Ce_{0.15}$	Cu	0.991	0.847	Sm ₂	Cu	0.986	0.841
Eu ₂	Cu	0.983	0.837	Gd ₂	Cu	0.979	0.832
La ₂	Pd	0.974	0.818	Dy_2	Cu	0.972	0.824^a
Y_{2}	Cu	0.970	0.822^a	Ho ₂	Cu	0.969	0.821^a
Er ₂	Cu	0.966	0.817^{a}	Tm ₂	Cu	0.963	0.814^{a}
A ₂		tf	\boldsymbol{t}	A ₂		tf	\boldsymbol{t}
			T^* -type (A_2CuO_4)				
$La0.85Eu0.9Sr0.25$		1.001	0.859	LaGd _{0.8} Sr _{0.2}		1.000	0.857
La _{0.8} SmSr _{0.2}	1.000		0.858	$La_{0.75}SmSr_{0.25}$		1.000	0.858
La _{0.82} SmSr _{0.18}	1.000		0.857	$La1.1Eu0.8Sr0.1$		1.000	0.857
$La_{0.9}Eu_{0.9}Sr_{0.2}$	1.000		0.857	La _{0.8} EuSr _{0.2}		0.999	0.856
La _{1.3} Tb _{0.7}	0.999		0.855	La _{1.4} Tb _{0.6}		0.999	0.856
$La_{0.9}Y_{0.8}Sr_{0.3}$	0.997		0.855	LaDv _{0.8} Sr _{0.2}		0.997	0.854
LaEu _{0.9} Sr _{0.1}	0.997		0.855	La _{1.2} Dy _{0.8}		0.994	0.851

TABLE 1 Comparison of the Tolerance Factors *tf* and *t* for the A_2BO_4 Compounds

^a High pressure form.

^b High temperature form.

^c Orthorhombic.

with *tf* greater than this value could belong to the K₂SO₄- (1.121), K₂CuF₄ (1.109), Ba₂HfS₄ (1.064), and Ba₂ZrS₄ (type field, except that of (1.141) for Sr₂MnO₄. The result (1.060) all fall in the pr type field, except that of (1.141) for $Sr₂MnO₄$. The result of the computation of the tf values for the K_2SO_4 -type phases Ca_2SiO_4 , Sr_2MO_4 ($M = Si$, Ge), and Ba_2MO_4 **CONCLUSIONS** $(M = Ti, Ge, V)$ confirms the expectation (18).

Besides temperature, pressure also greatly affects the A new tolerance factor *tf* for the Nd_2CuO_4 -type structure stability limit of the T' and T phases. For example, a high has been proposed based on the geometrica

The *tf* value for the T^* -type CaSmCuO₃Cl is 0.993 (10). The result is better than that of $t = 0.842$ calculated by ACKNOWLEDGMENT **ACKNOWLEDGMENT** tolerance factor *tf* also can be applied to the *T*-type halides The author thanks Dr. Bruce W. Scott and Professor David Walker and sulfides $(19, 20)$. For example, the *tf* values for K_2NiF_4 for very helpful discussions. This work is contribution number 5526 from

has been proposed based on the geometrical matching pressure phase transition from olivine-type, having six-
coordinated A and four-coordinated B , to T -type was been successfully applied in the investigation of the struccoordinated *A* and four-coordinated *B*, to *T*-type was been successfully applied in the investigation of the struc-
found in Ca₂GeO₄ (14). In addition, the *T'* phases tural stability of the *T'*. *T*, and *T*^{*} p found in Ca₂GeO₄ (14). In addition, the *T'* phases tural stability of the *T'*, *T*, and *T** phases. Surprisingly, Ln_2CuO_4 ($Ln = Dy$, Ho, Er, Tm, Y) with $tf \le 0.972$ can the *T* and *T'* phases are perfectly separate *Ln*₂CuO₄ (*Ln* = Dy, Ho, Er, Tm, Y) with $tf \le 0.972$ can the *T* and *T'* phases are perfectly separated by an "ideal" only be prepared at high pressure due to the presence of tolerance factor $tf = 1.00$. suggesting t only be prepared at high pressure due to the presence of tolerance factor $tf = 1.00$, suggesting that the model relates the small size of $Ln(9)$. Both examples follow a general accurately to the ionic packing factors of th the small size of *Ln* (9). Both examples follow a general accurately to the ionic packing factors of the *T'* and *T* rule that the coordination number of the cation increases structures and clearly showing that *tf* is rule that the coordination number of the cation increases structures, and clearly showing that *tf* is a very powerful with pressure. classification parameter.

the Lamont-Doherty Earth Observatory of Columbia University and 10. K. V. Ramanujachary, M. Greaney, R. L. Fuller, and M. Greenblatt, was supported by the National Science Foundation and the Department *J. Solid State Chem.* **93,** 263 (1991). of Energy. 11. R. D. Shannon, *Acta Crystallogr. Sect. A* **32,** 751 (1976).

-
-
-
-
- **Chem. 94,** 213 (1991).
A. Manthiram and J. B. Goodenough *J. Solid State Chem.* 87, 402 17. N. E. Brese and M. O'Keeffe, *J. Solid State Chem.* 83, 1 (1989).
- 6. A. Manthiram and J. B. Goodenough, *J. Solid State Chem.* **87,** 402 (1990). 18. G. Liu and J. E. Greedan, *J. Solid State Chem.* **103,** 228 (1993) and
- 7. J. B. Goodenough and A. Manthiram, *J. Solid State Chem.* **88,** 115 references therein. (1990). 19. B.-H. Chen and B. W. Eichhorn, *Mater. Res. Bull.* **26,** 1035 (1991).
-
- 9. H. Okada, M. Takano, and Y. Takeda, *Physica C* **166,** 111 (1990). (1991).
-
-
- 12. (a) Von H. Müller-Buschbaum and W. Wollschläger, *Z. Anorg. Allg. Chem.* **414,** 76 (1975); (b) J. M. Longo and P. M. Raccah, *J. Solid* **REFERENCES** *State Chem.* **6,** 526 (1973).
	-
	-
- 1. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

2. Y. Tokura, H. Takagi, and S. Uchida, *Nature* 337, 345 (1989).

3. E. Takayama-Muromachi, Y. Matsui, Y. Uchida, F. Izumi, M. Onoda,

3. E. Takayama-Muromach
	-
	-
	-
	-
- 8. B.-H. Chen and B. W. Eichhorn, *J. Solid State Chem.* **97,** 340 (1992). 20. M. Saeki, Y. Yajima, and M. Onoda, *J. Solid State Chem.* **92,** 286